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Abstract. Employing Haga’s perturbation method, we derive an effective Hamiltonian for 
the interface magnetopolaronin polar crystals at zero temperature. in which the interactions 
of both bulk longitudinal optical (LO) phonons and interface (IF) phonons have been taken 
into account, Solving this effective Hamiltonian analytically, we obtain explicit formulae not 
only for the electron cyclotron mass associated with the Landau levels but also for the seif- 
trapping energy of the magnetopoiaron with respect to its first three quantum states in the 
direction normal to the interface of the system. Numerical results are calculated for some 
II-Wand Ill-Vmmpounds. revealing that theeffkctsofthe bulk LO phononsandlFphonons 
on the electron in different quantum states do show different trends. 

1. Introduction 

As we know, an electron moving slowly in the conduction band of a polar crystal will 
interact with the phonon field produced by the polarization of the crystal lattice, forming 
a quasi-particle called a ‘polaron’. However, fewer people recognize that such electron- 
phonon interactions will also cause a correction to the Landau levels, which are the 
harmonic oscillator levels formed in a magnetic field, and renormalize the band mass of 
the electron, the effects of which are observable in a cyclotron resonance experiment. 
Over the last few decades, many studies on three-dimensional (3D) polarons have been 
carried out [l, 21. With the technological progress in materials science, various quasi- 
two-dimensional (QZD) electronicsystems have been fabricated (e.g. GaAsGa,  -AI,As 
and %As-GaSb heterostructures and superlattices; InSb and Cd, -xH&Te metal- 
oxidesemiconductor structures). Most of the systems concerned are made up of crystals 
whose electron-phonon interactions are not strong, with the coupling constants being 
of the order of 0.1. Extensive experimental investigations have subsequently been done 
on these Q2D systems [3-71, in which the changes in the cyclotron resonance frequency 
of the electron, caused by the interactions between the phonons and the electron, have 
been discovered. 
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Since the electron in a Q2D system is generally confined to a thin layer of 10-100 A? 
researchers usually neglect the finite extension of the electron wavefunctions in the 
direction normal to the surface and regard the system as an  ideal 2D one. Moreover. 
they usually consider only the zero-temperature case. Based on the above-mentioned 
assumptions, several groups of researchers (see e.g. [8-13]) have employed various 
methods such as the Green function method, the Feynman path-integral technique and 
anovel perturbation method tocalculate theshifts in the Landau levelsand the magneto- 
optical anomalies due to the interactions between the electron in the resonant region of 
a2D system and the bulk longitudinal optical (LO) phonons. Although systematic studies 
on surface and interface polarons have been performed in the past two decades (see e.g. 
[14-201). as yet rather insufficient attention has been paid to surface and interface 
magnetopolarons in semi-infinite crystals. Recently. one of the authors (Gu Shi-Wei) 
and his collaborators [21] have made some detailed investigations on the properties 
of interface magnetopolarons with the generalized Larsen [13] method in the zero- 
temperaturecase, andsubsequent extension to the finite-temperature case has also been 
made [22-241. 

Despiteall thesepreviousworks, westressthat theidealmsystemis basically nothing 
more than an approximate one for real semi-infinite crystals. In a rigorous treatment, 
for an electron in systems composed of such crystals, the extension of its wavefunction 
in the direction perpendicular to the surface or interface cannot be disregarded. There- 
fore, it  isisvery worth while tocalculate theself-trappingenergy as well as the cyclotron 
mass of a polaron with respect to its first three states in the direction normal to the 
interface of polar-polar crystals using Haga's perturbation method [25]. In our present 
approach, we consider the roles of both the half-space bulk longitudinal optical (LO) 
phonons and the interface (IF) phonons, and furthermore bring in an attractive image 
potential produced by the polarization of the electron clouds of the interface ions. Our 
work refers to weak and intermediate electron-phonon coupling conditions and an 
arbitrary magnetic field strength, but temporarily we restrict our discussion to the zero- 
temperature case. In section 2, we define the Hamiltonian of our system and apply two 
unitary transformations toit toseparate out the perturbation term from the unperturbed 
term. Using a perturbation method up to second order, we then derive an effective 
Hamiltonian for the electron in section 3. After solving this effective Hamiltonian, 
explicit formulae for the electron cyclotron mass, the shift in Landau levels and the self- 
trapping energy are obtained in section 4. The numerical results for a few 114'1 and III- 
V compounds are also given. The discussions and conclusion are presented in section 5. 

, ,  

2. The Hamiltonian 

Suppose there are polar crystals 1 and 2 (see figure 1) in the z > 0 and z < 0 half-spaces, 
respectively, the xy plane is at their interface and a static uniform magnetic field B is 
applied along the z axis and described by a vector potential in the Landau gauge A = 
E ( - y ,  0,O). As the electron moves in crystal 1, i.e. the z > 0 side, so there is a barrier 
from crystal 2 to it. For simplicity, we suppose that the barrier is infinitely high so that 
the electron is restricted within crystal 1. In this paper, we simultaneously take into 
account the interactions between the electron and both the bulk LO phonons in the z > 0 
half-space and the IF phonons. Besides, we also include an image potential produced by 
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Figure 1. An infinite polar crystal 1 (at z > 0) is 
interfaced with another crystal 2 at thexy plane. The 
applied magnetic field B and its associated vector 
potential A are pointingalong the z and -y directions. 
respectively. 

polarizing the electron cloud of the interface ions. Under the isotropic effective-mass 
approximation, the Hamiltonian of our system can be written as [21]: 

%e = %e, + %ee, + %e& (1) 
where 

and 

with 

Here 

K 

%eeIF= x [ C :  exp(-qz)exp(-ip.g)6: +HC] (2 2 0) 
9 

. v ,  0) and momer :tron has Dosition vector ( x .  v. z )  with LI = 

(If) 
(Ig) 

m p  = 
(px,py,pz).Thebulk~ophononwavevectorisK = (Kx,  Ky, Kz)withf?equencywLoand 
projection K,l= ( K x ,  KyI 0), whereas q is the ZD IF phonon wavevector with frequency 
wIF. The creation (annihilation) operators of the haf-space bulk LO phonon and IF 
phonon are, respectively, &; (&) and 6: (6q). The V and A in (Id) and (le) are the 
volume of crystal 1 and the interface area respectively; and ( E , ~ )  and ( E ~ )  are the 
optical and static dielectric constants of crystal 1 (crystal Z), respectively. The chief 

. . I .  I . . , 
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Hamiltonian term X, (la) contains the electron kinetic energy under a magnetic field, 
the image potential and the energy of the bulk LO phonons and the IF phonons. The 
electron-bulk Lo phonon and the electron-IF phonon interactions are given in (16) and 
(IC) respectively. 

The relation between the frequency of the bulk transverse optical (TO) phonon and 
those of the bulk LO phonon and the IF phonon (analogous with the surface optical 
phonon) have already been given in [21]. 

ContrarytoLarsen'sperturbational merhodused in 1211, wepresentlyemploy Haga's 
[25] approach with two successive unitary transformations 

and 

~2 = e x p ( ~ ( ~ f ~  K - + c 4 (6:gq - 6,g;)j (3) 

where the displacement amplitudesf, and g, are defined as 

fx = (-2mb/h2)%/(Ki + U:) 

g, = (-2mb/hz)C,"/(q2 + 4) 
uL = (2mb0L0/fi)l~2 

U ,  = (2mb~,F/h)'/Z 

actingon equations ( l a ) ,  (lb) and (IC). We can then eliminate the component p of the 
electron position coordinates (especially the phase factors exp(-ip. K,,) and 
exp(-ip 4)) and obtain the transformed Hamiltonian 

X* = u;~u;'Xu,u2 = %e$ + XT (4 )  

where 

and 
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+ E [vi sin(zK,)iiK+ + HC] + Z(C; e-q.6' + HC) 

+ higher-order terms in a i ,  iiK, 6: and 
K rl 

( 2  3 0). (46) 
We have introduced a new coordinate 9 = y - cp,/eB because pL commutes with %* 
and so can be treated as a c number. The term %e,* is taken as the unperturbed Ham- 
iltonian whereas %; can be regarded as a perturbation in the weak and intermediate 
electron-phonon coupling conditions [25]. 

3. Effective Hamiltonian at zero temperature 

In the zero-temperature case, we need only consider the phonon vacuum state 10) as our 
ground state and the energy levels of the electron are calculated from a perturbation 
approach on the average of the transformed Hamiltonian X* over the zero-phonon state 
IO). In other words, those electronic states are obtainable from an effective Hamiltonian 
defined as [26] 

where In) represents the general state occupied by n phonons. E. and Eo are the energy 
of the unperturbed states that contain n phonons and no phonon, respectively. Note 
that the matrix element for the first-order correction is (01 X ?  IO) = 0 and the non-zero 
matrix elements for the second term of (5) are 

( l K l X ;  10) = (h2/2mb)fd(Kif + u t ) [ l -  sin(iK,)] 

+ (2mb/ti2)wcKxS- (2/fiFyPd (2 3 0) (64 

and theirconjugates, where Il,)andll,)standforthestatescontainingabulkLophonon 
of wavevectorK and an IF phonon of wavevector q,  respectively. Here we have ignored 
the contributions of the excitation of more than one phonon to the matrix elements. The 
energy differences between the states relevant to equations (6a) and (66) are 

EIK - Eo = (fi2/hb)(Kf + U ? )  ( 7 4  

respectively. Putting (6a), (6b), (7a) and (76) into (5) and converting the summation 
over wavevectors into integration, it can be shown after some tedious manipulation that 
the effective Hamiltonian has the following explicit form: 
Se,, = (1/2m,*)p$ + ?m,* CO,*%' + (1/2mb)p: - [(em2 - E,,)/~E,,(E,~ + eW2)]e2/z 

- Q ' L ~ ~ ~ L O ( X / ~  - FL(~)) - ( y I f i m ~ ~ F ~ ( z )  ( 2  3 0) (8) 
where the functions FL and FI have been defined explicitly in [26]. 
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Thefirst two termsoftheexpression (8)describe thecyclotronmotionoftheelectron 
in the xy plane, which is represented concisely by a single coordinate y = y - cp,/eB 
introduced earlier. The cyclotron mass m; and cyclotron resonance frequency w: are 
given in equation (4a) of [26] and they are dependent on the electron-phonon coupling 
strength cu, (for bulk LO phonons) and (for IF phonons), which are also defined in 
[26]. However, they are independentofneither thestates(see (9b) below) oftheelectron 
in thezdirectionnorthe magneticfieldstrength,showing that mp” ando; aredetermined 
completely by the optical and the static dielectric constants of both crystal 1 and crystal 
2. Such a result is quite analogous to that of Liang’s [27] studies on the magnetopolaron 
in a polar crystal slab. The rest of (8) expresses the motion of the electron in the z 
direction, and the last two terms, which are the induced potential originated from the 
interaction between the electron and the phonons, are those determining the self- 
trapping energy of the electron depending on its states in the z direction. 

4. The solutions and results 

To solve the Schrodinger equation pertaining to the effective Hamiltonian %teff in (8), 
the wavefunction of the electron is written in product form 

wu, 2 )  = g ( O d z )  
where g ( 9 )  and q(z )  satisfy 

In (gb), 
%e, = ( 1 / h b ) p :  - [ (E12 - E=I)/~€xL(E=~ + d k 2 / z  - (Jd4)&w~o 

and 

rre: = cu,fiwLoF,(r) - a,hw,,F,(z). 

The total energy is therefore E = E,, + E,. The Landau levels and the self-trapping 
energy of the interface magnetopolaron can be acquired by solving equations (9a) and 
(9b), respectively. 

It is quite obvious that (9a) is the wave equation of a harmonic oscillator, whose 
eigenvahes (Landau levels) and eigenfunctions are 

n = 1 ,2 , .  .. E. = (n  + $)Aw,* 

&(Y) = N ,  exP(-n%2/2)H,(~*u) 

and 

where A = (m,*w:/fi)@, H,, are the nth-order Hermite polynomials and N ,  are the 
normalization constants. Note that w: mp* = m a b  and so the shift in the Landau levels 
is reflected as a renormalization of the band mass mb. 

As examples, we select some typical 11-VI and HI-V compounds (as crystal 1) 
interfaced with TiOZ (as crystal 2) for the numerical computation. Those compounds 
are very common semiconductor materials especially used for fabricating hetero- 
structures and quantum-well devices. The parameters of the materials concerned and 
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Table 1. Parameters of selected materials and cyclotron masses. The interfaced crystal is 
Ti02 whose = 200 and E. = 78. Energies are in meV and m is the free electron mass. 

ZnSe 8.33 5.90 1.37 0.108 30.5 0.171 2.38 
ZnTe 9.86 7.28 1.15 0.111 7.5.5 0.160 1.98 
CdTe 10.23 7.21 0.97 0.094 20.8 0.091 1.72 
GaAs 12.83 10.9 0.39 0.054 36.7 0.0657 1.21 
GaSb 15.69 14.44 0.261 0.047 29.8 0.047 1.14 
lnAs 14.61 11.8 0.232 0.035 30.2 0.0342 1.12 

the cyclotron mass mp" obtainable from [26] are listed in table 1. The results reveal that 
the electron cyclotron mass m; is apparently greater than its band mass mb, owing to 
the interactions between the electron and the bulk Lo phonons and the IF phonons. 
Furthermore, the polarity of the 11-VI compounds is sfronger than that of the 111-V 
compounds, so the effect of the mass renormalization of the electron in 11-V compounds 
is more obvious. 

In equation (9b), the term Yez has the wave equation isomorphic to the radial motion 
of an electron in a hydrogen atom, so we can readily obtain its solutions as follows: 

El = -(mby*/2nz)(1/12) - (Z/4)cY,fLWLO 

P I ( Z )  = zyIxK)(z) 1 = 1 , 2 , 3 , .  . . 
where 

Y =  [(E,z - €,1)/4E,i(E,i f E C C Z ) ] € ~  

and yIm(z) is the wavefunction of the electron of the hydrogen atom in the (10 0) state. 
The remaining term in (9b), namely Ye; ,  can be regarded as a perturbation to X z  and 

its first-order energy correction can be partitioned into the bulk LO phonon and the IF 
phonon parts as follows: 

AE, = ( q t l X i  1 ~ , ) =  AEP + AEjF (10) 
where 

and 

Putting the explicit forms of q l ( z )  in ( loa)  and (lob), we have obtained the analytical 
expressions for those integrals in the first three principal quantum numbers 1 using the 
partial fraction method for integration, but they are too lengthy and cumbersome to be 
presented here. 

is given by 
Now, the self-trapping energy E;' of the polaron (in the lth state of the z direction) 

E" I - - ( $ ~ c ~ L f i ~ , o  - A q o )  - AEIF I - - E ,  IrLo + I '  

The position of the polaron in crystal 1 can be indicated by its mean distance from the 
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Tabte 2. Self-trapping energies E;' and mean distances i, from the interface of the polaron 
in selected malerials interfaced with TiO? as well as the first-order bulk LO phonon AEI0 
and the IF phonon AE;' contributions to E: for I = 1,2 and 3. Energies are in meV and 
distances in A. 

Materials I E, AEF0 AE;F E)' 5, 

ZnSe 1 
2 
3 

ZnTe 1 
2 
3 

CdTe 1 
2 
3 

GaAs 1 
" - 
3 

GaSb I 
2 
3 

lnAs 1 
2 
3 

-35.86 3.05 
-33.55 1.03 
-33.12 0.82 

-24.81 1.78 
-23.49 0.63 
-23.24 0.51 

-16.89 1.05 
-16.12 0.40 
-15.98 0.34 

-11.5 0.37 
-11.29 0.26 
-11.26 0.25 

-6.21 0.15 
-6.14 0.12 
-6.13 0.12 

-5.57 0.15 
-5.51 0.13 
-5.50 0.13 

-0.557 30.33 
-0,195 31.98 
-0,159 32.16 

-0.409 21.66 
-0.158 27.56 
-0.136 27fi 

-0,241 15.04 
-0.102 15.55 
-0.090 15.60 

-0.129 11.0 
-0.098 11.07 
-0.096 11.08 

-0.1179 6.039 
-0.070 6.055 
-0.069 6.057 

-0.056 5.41 
-0.050 5.423 
-0.050 5.424 

127.5 
509.9 
1147 

174.2 
696.8 
1568 

302.8 
1211 
2 725 

697.9 
2 792 
6281 

1419 
5 675 
12770 

2210 
8 839 
19890 

interface, and in the Ith state of the z direction, the mean distance is 2, = 31Za, where a = 
h2/(ymb). We present in table 2 the numerical results of the self-trapping energy of 
the interface magnetopolaron in some materials. It is found that, with the increase of 1, 
the self-trapping energy of the electron in both the 11-VI compounds and 111-V com- 
poundsincreasesand gradually converges to the limit fnaLhwL0. However, such changes 
intheenergyoftheelectronintheformeraremuchgreaterthanthatofthelatterbecause 
11-VI compounds have stronger polarity than 111-V compounds. In addition, it can be 
concluded that, with the increase of the mean distance of the polaron from the interface, 
the effects of the IF phonons weaken rapidly whereas the contributions of the bulk LO 
phonons are increasing. The magnetopolaron can then be treated as a three-dimensional 
one, disregarding the IF phonon contributions. 

5. Discussions and conclusion 

Using Haga's perturbation method, we have obtained an effective Hamiltonian for the 
interface magnetopolaron in polar crystals at zero temperature. Although we have 
assumed that the interface potential barrier is infinitely high, for any finite but high 
potential wall problem, it has been shown by Lee and Mei [28] that it can be solved 
approximately as an alternative problem with an infinite wall placed at a small 
(penetration) distance beyond the original wall. Hence our approach can similarly be 
adapted for a finite barrier. We have also solved that effective Hamiltonian analytically, 
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yielding explicit formulae for some interesting physical properties of the interface 
magnetopolaron, namely, cyclotron mass and self-trapping energy. Our formula for the 
self-trapping energy includes contributions from the interface phonons as well as the 
usual bulk LO phonons in a half-space. It is noted that the cyclotron mass of the interface 
magnetopolaron is mainly related to the optical and static dielectric constants of both 
crystals but independent of the magnetic field strength and the quantum states 1 of the 
electron in the direction normal to the interface. 

For our numerical calculations, several typical 11-VI and 111-V semiconductor com- 
poundsarechosen to beinterfaced withtheTiO,crystal, which hasaverylargedielectric 
constant so that the electron could be attracted much closer to the interface by the image 
potential and hence the interface phonon effect would be more conspicuous. Our 
results show that the stronger the polarity of the material, the more apparent the mass 
renormalization of the electron in the material. However, for the case of self-trapping 
energy, the stronger polarity of crystal 1 will reduce the attractive image potential 
(= -U/.) and so the mean distance .t(which is inversely proportional to y )  will increase, 
rapidly reducing the contributions of the IF phonons. On the contrary, the contributions 
from the bulk LO phonons will increase steadily. These two characteristics are in fact 
very similar to the previous work done by Gu el a1 [21] when they investigated the 
properties of a magnetopolaron at the interface of polar-polar crystals using Larsen's 
perturbational method. The same situation will also occur for increasing quantum 
number 1 as 5 is directly proportional to 1:. Hence it is quite sufficient to consider the 
first three states only; thereafter the self-trapping energy will converge rapidly to the 
limit of InaLfiwLo. Besides, ourcalculationsshow that AEiF and AE:' in (10) are really 
small (less than 10%) compared with the first-order term E, and this verifies the cor- 
rectness of our perturbation approach in solving equation (9). 

On the other hand, if we focus our interest on the energy level splitting (E,+, - E,) 
of various quantum 1 states, we would find that the IF phonons will give significant 
contributions (AErF) that are opposite in sign to those of the bulk LO phonons. Fur- 
thermore, it is remarked that the calculated energy level splittings of our examples in 
table 2 are in the energy range of 0.1 to 10 cm-I, which happen to be measurable by the 
conventional electron spin resonance technique. It is unfortunate that we could not find 
any experimental data from the literature to compare with our theoretical values. 
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